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ABSTRACT: Cancer progression involves changes in extracellular

proteolysis, but the contribution of stromal cell secretomes to the cancer ‘ — .
degradome remains uncertain. We have now defined the secretome of a Cancer-associated [ 4 A@cent tssue %@ imaging
myofibroblasts myofibroblasts,

specific stromal cell type, the myofibroblast, in gastric cancer and its .
modification by proteolysis. SILAC labeling and COFRADIC isolation of Ca"‘:;;:;::e":blm
methionine containing peptides allowed us to quantify differences in gastric TI [ :rl o | activation of MMP-1,
cancer-derived myofibroblasts compared with myofibroblasts from adjacent L = omya : MIMP-2, MMP-3

tissue, revealing increased abundance of several proteases in cancer w t
myofibroblasts including matrix metalloproteinases (MMP)-1 and -3. separation T
N-terminal E ‘ ‘ I
COFRADIC —U——J——A—*M—«.‘L_.‘u

Moreover, N-terminal COFRADIC analysis identified cancer-restricted Me,,‘mnv, s,w,gun
proteolytic cleavages, including liberation of the active forms of MMP-1, MM

-2, and -3 from their inactive precursors. In vivo imaging confirmed increased
MMP activity when gastric cancer cells were xenografted in mice together

with gastric cancer myofibroblasts. Western blot and enzyme activity assays confirmed increased MMP-1, -2, and -3 activity in
cancer myofibroblasts, and cancer cell migration assays indicated stimulation by MMP-1, -2, and -3 in cancer-associated

myofibroblast media. Thus, cancer-derived myofibroblasts differ from their normal counterparts by increased production and
activation of MMP-1, -2, and -3, and this may contribute to the remodelling of the cancer cell microenvironment.

KEYWORDS: myofibroblast, secretome, COFRADIC, degradome, neo-N-termini

B INTRODUCTION that defines the extracellular tumor degradome. In cancer,
alterations in extracellular proteolysis through differential
secretion of proteases or their inhibitors is important, not
least because it underlies disease progression and sensitivity to
protease targeted therapies.>™"

Cancer-associated fibroblasts, of which myofibroblasts are a
subset, are important stromal cells that exhibit an altered
phenotype in many cancers.'®”** Myofibroblasts play impor-
tant roles in defining the tissue microenvironment through
secretion of extracellular matrix components, growth factors,
proteases and their inhibitors.>”>" Differences between normal
and cancer-associated myofibroblasts (CAMs) have been linked
to tumor progression by mechanisms including recruitment
from circulating mesenchymal stromal cells, global DNA
hypomethylation and changes in gene expression profiles.”*~**

Elucidation of the dynamic changes in secretomes, ie., the
secreted subset of the proteome, underlies a systems approach
to understanding the mechanisms controlling cell—cell and
cell-matrix interactions in health and disease. In cancer it is
now clear that changes in the cellular microenvironment
determine disease progression, and that these include two-way
interactions between cancer cells and surrounding stromal
cells.'

Several recent studies have employed proteomic techniques
to define the secretomes of cancer cells.*"'® Recent studies
have also defined the secretome in breast and colon cancer
fibroblasts,""'* but in general the interrogation of stromal cell
secretomes by proteomic methods has been limited. Changes in
secretomes may reflect alterations in secretory protein
abundance due to variations in gene expression, rates of
exocytosis or presecretory post-translational processing. But in Received: March 26, 2013
addition, there may also be extensive postsecretory proteolysis Published: May 24, 2013
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Since myofibroblasts stimulate cancer cell invasion, in the
present study we sought to define the differences between
gastric CAMs compared with adjacent tissue-derived myofibro-
blasts (ATMs) with respect to proteolytic processing of their
secretomes. The data indicate both upregulation and activation
of matrix metalloproteinases (MMPs)-1, -2, and -3 are
characteristic of the CAM secretome.

B MATERIALS AND METHODS

Human Primary Myofibroblasts

Myofibroblasts from gastric cancers (CAMs) and adjacent
tissue (ATMs) from two patients have been described
previously (Supporting Information).'” The work was
approved by the Ethics Committee of the University of Szeged,
Hungary, and subjects provided informed consent.

SILAC Labeling

Myofibroblasts were cultured in DMEM SILAC media (Pierce,
Thermo Scientific, Rockford, IL, USA) for 6 population
doublings in the presence of either natural (light) or heavy
BCg-labeled L-arginine (0.94 mM) and "*Cg L-lysine (0.46 mM)
(Invitrogen, Paisley, Renfrew, UXK.). Media were further
supplemented with 10% dialyzed fetal bovine serum (Pierce),
2% antibiotic/antimycotic (Sigma-Aldrich, Poole, UK.) and 1%
penicillin/streptomycin (Sigma).

Sample Preparation

Media (10 mL, serum-free) obtained from 1 X 10°
myofibroblasts plated in 10 cm diameter dishes (80—90%
confluency) were collected after 24 h. Samples were
concentrated to approximately 0.5 mL using Amicon Ultra-15
3 kDa centrifugal filter devices (Millipore, Watford, U.K.),
precipitated with 20% TCA and resuspended in 50 mM
HEPES, pH 7.4, 100 mM NaCl, 0.8% w/v CHAPS, 1% v/v
Protease Inhibitor Cocktail Set III, EDTA-Free (Calbiochem,
Merck Biosciences, Beeston, U.K.). Equal amounts (35 ug
each) of light and heavy SILAC-labeled secretome samples
from CAMs and ATMs were mixed following determination of
protein concentration by the Bradford assay (Bio-Rad Lab, Inc,
Hemel Hempstead, UK.).

COFRADIC Isolation of Methionine Containing Peptides

Methionyl-COFRADIC was performed as described previ-
ously” (see Supporting Information Methods). Samples were
reduced and S-alkylated, and following trypsinization (trypsin:-
protein 1:100), peptides were fractionated by reversed-phase
HPLC (RP-HPLC) using an Agilent 1100 HPLC system with a
Zorbax 300SB-C 5 column (2.1 mm (internal diameter) X 150
mm, Agilent Technologies, Wokingham, U.K.). The resulting
HPLC fractions were further processed by incubating for 30
min with 0.1% w/v hydrogen peroxide at 30 °C. Following
oxidation of methionines, reaction mixtures were immediately
reinjected onto the RP-HPLC column for secondary RP-HPLC
separations under identical conditions. Fractions with methio-
nine containing peptides displayed a hydrophilic shift and were
collected (n = 90) and analyzed by LC—MS/MS.

COFRADIC Isolation of N-Terminal Peptides

N-terminal COFRADIC was performed as described pre-
viously’®*” (see Supporting Information Methods). Proteins
were reduced and alkylated, and primary a- and e-amines were
blocked by trideutero-acetylation. Samples were then trypsi-
nized, and N-terminal peptides were pre-enriched by strong

cation exchange chromatography at low pH. Following a pyro-
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glutamate removal step, peptides were separated by RP-HPLC
as described above. Primary fractions were incubated with
2,4,6-trinitrobenzenesulphonic acid (TNBS) to modify internal
tryptic peptides with free @-N-termini. A series of secondary
RP-HPLC runs was then performed on each individual primary
fraction, and N-terminal peptides (which did not display a
hydrophobic shift) were collected (n = 36) for LC—MS/MS
analysis.

Non-COFRADIC Experiments

Samples prepared for “shotgun” analysis of the secretomes were
processed following the same method as for Met-COFRADIC
up to the stage immediately before the first RP-HPLC run. At
this point the sample was processed for LC—MS/MS analysis
(see Supporting Information Methods).

For neo-N-terminal enrichment, the non-COFRADIC
method employed a SCX-only enrichment of N-terminal
peptides. Samples were prepared as for N-terminal COFRA-
DIC up to the first RP-HPLC run. At this stage 60 fractions of
1 min interval were collected, pooled to give a total of 20
fractions, dried and prepared for LC—MS/MS analysis.

LC—MS/MS Analysis and Peptide Identification by Mascot

Peptides were analyzed using a LTQ Orbitrap XL mass
spectrometer (Thermo Electron, Bremen, Germany) as
described previously.”® Mascot generic files (mgf) were created
using the Mascot Distiller software (version 2.2.1.0, Matrix
Science, Ltd, London, UXK.). When generating peak lists,
grouping of spectra was performed with a maximum
intermediate retention time of 30 s and maximum intermediate
scan count of 5. Grouping was further done with 0.1 Da
precursor ion tolerance. A peak list was only generated when
the spectrum contained more than 10 peaks. There was no
deisotoping, and the relative signal-to-noise limit for both
precursor and fragment ions was set to 2. The peak lists were
then searched with Mascot using the Mascot Daemon interface
(version 2.2.0, Matrix Science, Ltd.) against human proteins in
the Swiss-Prot database (Uniprot release 15.0, containing 20
333 human protein sequences). Spectra were searched with
semiArgC/P enzyme settings, allowing no missed cleavages for
the N-terminal peptide experiments, and with trypsin/P
settings allowing no missed cleavages for the Met-COFRA-
DIC/shotgun experiments. Mass tolerance of the precursor
ions was set to 10 ppm (with Mascot’s C13 option set to 1) and
of fragment ions to 0.5 Da. The instrument setting was ESI-
TRAP. Variable modifications were acetylation of alpha-N-
termini and pyroglutamate formation of N-terminal glutamine
residues; fixed modification was oxidation of methionine
(sulfoxide). Additionally, for N-terminal peptide experiments,
trideutero-acetylation of the N-terminus was set as variable
peptide modification, and trideutero-acetylation of lysine side
chains was included as fixed modification. Only peptides that
were ranked one and scored above the identity threshold score
set at 99% confidence were withheld. The FDR was calculated
for every search as described previously (see Supporting
Information Methods, Table SM3).>® Identified peptides were
quantified using the Mascot Distiller Quantitation Toolbox
(www.matrixscience.com) in the “precursor” mode as described
previously.”” Ratios for all peptides of interest were validated by
manual inspection of spectra. For processing of all MS data, the
ms_lims software platform was used.’® Protein ratios were
inferred using the mean of the peptide group ratios for each
protein. A peptide group represents all quantifications of a
single peptide sequence in an experiment. The distribution of

dx.doi.org/10.1021/pr400270q | J. Proteome Res. 2013, 12, 3413—3422
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Figure 1. Myofibroblast secretomes. (A) Venn diagram showing, left, identification of unique proteins, on the basis of one or more unique peptides
with a validated quantification, in media from pairs of CAMs/ATM:s from two patients, and overlap with Met-COFRADIC identifications in patient
1 based on the same criteria; right, extracellular proteins in this data set. (B) Functional classification of extracellular proteins identified by Met-
COFRADIC and classical “shotgun” proteomics, alongside cleaved proteins and total cleavage products in myofibroblast secretomes by N-terminal
peptide enrichment (restricted to identifications with successful quantification).

protein ratios as determined by the Met-COFRADIC and
shotgun experiments was plotted using Rover.”" This was used
to define thresholds to give the 5% of proteins with the largest
fold changes in CAMs relative to ATMs. All spectra have been
stored in the PRIDE database (http://www.ebi.ac.uk/pride/,
accession numbers 27157—27161) using PRIDE converter.”
Protein subcellular localizations and functional classifications
were manually curated, using the UniProt and HPRD online
databases.

In Vivo Imaging

Immunocompromised mice (6 weeks old, BALB/c nu/nu,
Charles River, Wilmington, MA) with xenogafts of MKN4S
cells with or without CAMs (Supporting Information Methods)
were used for imaging MMP-activity using MMPSense 750
FAST. These experiments were approved by the University of
Liverpool Animal Welfare Committee and were conducted in
compliance with the UK. Animals (Scientific Procedures) Act
1986.

Western Blot

Myofibroblast cell extracts were prepared in RIPA buffer
containing protease and phosphatase inhibitors. Cell extracts or
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media were resolved by SDS-PAGE and processed for Western
blotting as previously described.*® Blots were probed with
antibodies against MMP-1 (BAF901, R&D Systems, Minneap-
olis, MN, USA), MMP-2 (BAF902, R&D Systems) and MMP-
3 (BAFS13, R&D Systems). Membranes were reprobed with
anti-GAPDH antibody (Biodesign, Saco, Maine, USA) for
assessing equal loading where appropriate.

Enzyme Assays

Fluorogenic assays for MMP enzyme activity were performed
using selective substrates: DNP-Pro-Leu-Ala-Leu-Trp-Ala-Arg-
OH (MMP-1; Calbiochem, Bedfont Cross, U.K.), DNP-Pro-
Leu-Gly-Met-Trp-Ser-Arg-OH (MMP-2/9; Calbiochem),
MCA-Pro-Leu-Ala-Nva-Dpa-Ala-Arg-NH, (MMP-2; Calbio-
chem), DNP-Pro-Tyr-Ala-Ty-Trp-Met-Arg-OH (MMP-3;
AnaSpec, Fremont, CA, USA) and S-FAM-Arg-Pro-Lys-Pro-
Val-Glu-Nva-Trp-Arg-Lys(TQ2W)-NH, (MMP-3; Enzo Life
Sciences, Exeter, UK.) as previously described.>*** Briefly,
equal volumes of assay buffer and media from 10°
myofibroblasts were incubated with 12 uM substrate as
appropriate.

dx.doi.org/10.1021/pr400270q | J. Proteome Res. 2013, 12, 3413—3422
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Figure 2. Increased MMP activity in vivo in xenografts containing CAMs. (A) In BALB/c nu/nu mice, MMP activity revealed by FMT imaging of
MMPSense 750 FAST is increased in xenografts of gastric cancer MKIN45 cells containing two different CAMs compared with MKN45 cells alone.
(B) Representative FMT images of mice with xenografts of MKN4S5 cells alone (top row), MKN4S cells + CAM2 (middle row), and MKN45 cells +

CAM1 (bottom row).

Migration Assays

Gastric cancer cell (AGS) migration (10° cells per 8 um pore
filter insert) (BD Biosciences, Oxford, U.K.) was studied as
previously described.>>*® Conditioned media were collected as
described above and treated with MMP-1 neutralizing antibody
(MAB901, R&D Systems), or selective MMP-2 (inhibitor I,
Calbiochem) and MMP-3 (inhibitor IV, Calbiochem) inhib-
itors as appropriate.

Statistics
Results are expressed as mean =+ standard error of the mean
(SEM), unless otherwise stated. Student’s t-test or ANOVA
(Systat Software, Inc., Hounslow, London, U.K.) as appropriate
were used to determine statistical significance of results and

considered significant at p < 0.05, unless otherwise stated.

B RESULTS

Different Secretomes in Cancer-Derived and Adjacent
Tissue Myofibroblasts

When myofibroblasts derived from two gastric cancers and
corresponding ATMs were SILAC labeled and the secretomes
analyzed by LC—MS/MS, approximately 350 unique proteins
(310 and 392) were identified in each pair on the basis of one
or more peptide unique assignments with validated quantifica-
tion (Supporting Information Tables S1, S2). Of these, 42 and
48% were characterized as extracellular proteins on the basis of
annotations in the UniProt and HPRD databases. One of the
paired samples was further analyzed using the COFRADIC
technology that enriches for methionine-containing peptides in
an attempt to increase overall proteome coverage by reducing
sample complexity. This approach more than doubled the
number of unique peptides and proteins identified in the
secretome, although a comparable proportion (31%) of the
identifications were attributable to extracellular proteins (Figure
1A; Supporting Information Table S3). The Met-COFRADIC
analysis identified the majority (72%) of proteins identified in
the initial experiments (Figure 1A). In total across the three
experiments, 1460 unique proteins were identified, of which
364 were annotated to be extracellular proteins.

Extracellular proteins making up the secretome were grouped
into 11 functional classifications (Figure 1B). There was a

3417

broadly similar distribution across these groups in both pairs of
CAMs and ATMs, with binding proteins and extracellular
matrix proteins the two largest groups (Figure 1B). When 95%
confidence limits were determined and applied to individual
experiments, 9—47 proteins were identified that were above or
below these limits (Supporting Information Figure S1;
Supporting Information Table S4). Interestingly, MMP-1,
MMP-3, MMP-10 and uPA were identified as upregulated in
CAMs in both patients (Supporting Information Table S4).
The largest groups showing differential abundance were
“binding” proteins, e.g., the insulin-like growth factor binding
proteins (IGFBPs), “receptor” proteins, e.g., epidermal growth
factor receptor, and proteases, e.g, MMP-1 (Supporting
Information Table S4).

Proteolytic Processing of the Secretome

We then extended the analysis to the identification of neo-N-
termini generated as a consequence of proteolytic cleavage.
Thus, SILAC-labeled media samples were enriched for N-
terminal peptides using a strong cation exchange (SCX) step to
remove nonterminal peptides. As part of this procedure, neo-N-
terminal peptides had been trideutero-acetylated prior to
trypsinisation to facilitate discrimination from other peptides
by mass spectrometry, and the results were filtered so that only
peptides that were trideutero-acetylated and had a valid Mascot
identification were used in subsequent analyses. Of unique
quantified peptides, 20—42% were trideutero-acetylated
(Supporting Information Table SS). This process identified
peptides starting at residues 1 or 2 of the protein or
immediately after removal of the signal sequence, which were
excluded from further analysis as they were considered
uninformative for present purposes. For each of the remaining
peptides, the ratio of relative abundance between the CAM and
ATM samples was manually validated by inspecting the spectra
and calculating the area under the peaks of the heavy and light
isotopes.

One of the paired samples was further analyzed using N-
terminal COFRADIC in addition to the SCX enrichment step
in an attempt to increase coverage of N-terminal peptides by
reducing sample complexity. Similar numbers of peptides were
identified by N-terminal COFRADIC and SCX-only enrich-
ment, but over 2-fold more of these identifications

dx.doi.org/10.1021/pr400270q | J. Proteome Res. 2013, 12, 3413—3422
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Figure 3. Western blots show the active forms of MMP-1, MMP-2, and MMP-3 in CAM media. (A) Representative Western blots of MMP-1 in
CAM and ATM media (left) and cell extracts (right). (B) Representative Western blots of MMP-2 in CAM and ATM media (left) and cell extracts
(right). (C) Representative Western blots of MMP-3 in CAM and ATM media at two different exposures (left, center) and cell extracts (right).

corresponded to neo-N-termini in the COFRADIC data set
(Supporting Information Table SS). Approximately 50% of all
unique proteins identified corresponded to putative secreted
proteins (Supporting Information Table S6). In the functional
classification, “binding proteins” and “ECM” proteins again
predominated (Figure 1B). Furthermore, 41 proteins were
identified that were not seen in the first set of SILAC
experiments, of which 24 were known extracellular proteins.

CAM-Restricted Proteolytic Events

In the data set as a whole, neo-N-termini corresponding to
putative proteolytic cleavage sites were identified in a total of 94
unique proteins, of which collagens alphal(I) and alpha-2(I)
and IGFBP-S had the most cleavage sites (Supporting
Information Table S7). In order to refine cancer-related
changes, we then sought those proteins for which unique
neo-N-termini were identified in CAM secretomes relative to
their ATM counterparts. Applying this criterion, we identified
13 proteins that exhibited CAM-restricted proteolytic cleavage
(Table 1): strikingly, these included cleavages in the propeptide

3418

domains of MMP-1 (interstitial collagenase) and MMP-3
(stromelysin-1) (Table 1 and Supporting Information Figure
S2); moreover, N-terminal COFRADIC also identified
increased prodomain cleavage in MMP-2 (72 kDa type IV
collagenase) (Supporting Information Table S7).

In Vivo MMP Activity

To determine the in vivo relevance of myofibroblasts for MMP
activity in tumors, we made use of FMT imaging of a MMP
fluorescent substrate in a xenograft model consisting of
MKN4S gastric cancer cells alone or with human CAMs. In
matched tumors of similar size generated with and without
coadministration of CAMs, the MMPSense substrate revealed
significantly increased activity when human CAMs were present
(Figure 2) .

Activation of MMP-1, -2, and -3 in CAM Media

The substrate used for in vivo imaging does not distinguish
individual MMPs, and subsequent studies therefore made use
of in vitro techniques to assess the relative contribution of

dx.doi.org/10.1021/pr400270q | J. Proteome Res. 2013, 12, 3413—3422
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MMPs1-3 in CAM media. Western blots of MMP-1 revealed
increased abundance of a 42 kDa form corresponding to the
active enzyme in CAM compared with ATM media; in contrast,
in cell extracts of the two cell types there was similar abundance
of the precursor proteins of 57 and 52 kDa (Figure 3A). For
MMP-2, we identified a precursor form of 72 kD in cells and
media of both CAMs and ATMs, again in similar abundance in
the two cell types. When blots of media were overexposed it
was possible to identify a minor band of 63 kDa corresponding
to the active enzyme in CAM but not ATM media (Figure 3B).
Finally, for MMP-3 we identified precursor proteins of 59 and
54 kDa in cells and media of both CAMs and ATMs; a band of
4S5 kDa corresponding to the active enzyme was found in
media, and the abundance was greater in CAMs compared with
ATMs (Figure 3C).

To establish the functional significance of these results, we
then studied MMP enzyme activity in CAM and ATM media.
Using a fluorogenic substrate for MMP-1, we found
significantly greater activity in CAM compared with the
corresponding ATM media (Figure 4A). Similarly, substrates
selective for MMP-2, or for MMP-2/MMP-9 (Figure 4A),
revealed greater activity in CAM than ATM media, and the
same pattern was observed with two different MMP-3
substrates (Figure 4A).
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Myofibroblast MMPs and Cancer Cell Migration

There is MMP-stimulation of migration of AGS gastric cancer
cells in Boyden chambers, and this was then used to test the
functional significance of the changes in MMP abundance and
activity in CAM media. Conditioned media (CM) from both
CAMs and ATMs stimulated AGS cell migration, but the
response to the former was significantly greater than to the
latter (CAM-CM: 207 + 11 cells per field; ATM-CM: 145 +
11, p < 0.0S; control media: 15 + 2). Neutralizing antibody to
MMP-1 (2.5 ug mL™') significantly suppressed AGS cell
migration in response to CAM-CM (Figure 4B); similarly,
previously characterized selective inhibitors of MMP-2 or
MMP-3 at concentrations approximately 3-fold above their
reported K; in each case (6 and 3 uM, respectively)*”>* also
inhibited AGS cell migration in response to CAM-CM,
indicating that active MMP-2 and MMP-3 released from
myobfibroblasts play a role in cancer cell migration (Figure
4B).

B DISCUSSION

The tumor microenvironment reflects the secretomes of both
cancer and stromal cells including myofibroblasts, fibroblasts,
pericytes, endothelial cells, inflammatory and immune cells.
Crucially, interactions between different secretomes influence
cancer cell migration, invasion and metastasis by multiple
mechanisms including the activation or inhibition of proteases
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with consequences for the proteolytic cleavage of ECM
proteins, growth factors, cytokines and chemokines."> The
secretomes of cancer cells have attracted increasing attention in
recent years,' ® but little is yet known of stromal cell
secretomes. Differences in the secretomes of myofibroblasts
recovered from gastric cancers and those recovered from
adjacent tissue have been reported recently using iTRAQ."” We
have now used SILAC and COFRADIC to determine the
extent to which proteolysis influenced myofibroblast secre-
tomes in gastric cancer. Our study identified neo-N-termini
derived from 94 proteins in CAM secretomes including
evidence of cleavage of the prodomains of MMP-1, -2, and -3
leading to increased extracellular proteolytic activity. The data
indicate that a distinguishing feature of cancer myofibroblasts is
increased expression and increased activation of these MMPs in
an autonomous manner in gastric cancer with the potential for
promoting cancer progression.

The identification of secreted biomarkers by cancer cells has
been a focus of interest for several generations and has been
stimulated more recently by the development and refinement
of proteomic methods and the prospect of rigorously defining
the cancer secretome.”” Extracellular proteolysis presents
additional challenges in defining the relevant secretomes; it is
important not least because it underlies multiple mechanisms
implicated in cancer progression including angiogenesis, tumor
cell migration and invasion. A number of proteomic methods
have recently been used to identify neo-N-termini generated in
complex samples including COFRADIC?® and terminal amine
isotopic labeling of substrates (TAILS),*” which has been
applied to the identification of substrates of MMP-2 and MMP-
9 in fibroblast secretomes.*** Since SILAC has previously
been used successfully for secretome studies in a range of cell
types including stromal cells from other tissues,"™** and since
COFRADIC coupled with SILAC labeling is considered to
offer a rigorous approach to N-terminomics,”*** these methods
were selected for the present studies.

The present study identified proteins in media released by
the endoplasmic reticulum—Golgi secretory pathway; however,
as commonly found in secretome studies, there were also
proteins likely to be released by other mechanisms including
cytoplasmic proteins liberated through cell death, shedding of
membrane proteins and release of exosomes. Previous studies
have identified similar rates of apoptosis in CAMs and ATMs'”
suggesting that differential cell death is unlikely to account for
differences in the CAM and ATM secretomes. For proteins
released through classical secretory mechanisms, we were able
to identify many previously reported in the secretomes of
fibroblasts and of the stem cells that may give rise to them,
includin% extracellular matrix proteins, IGFBPs, MMPs and
TIMPs.>** The differences between CAM and ATM
secretomes may reflect alterations in gene expression, post-
translational processing, relative rates of secretion and in
proteolysis following release. We have now defined the latter
though identification of neo-N-termini in CAMs compared
with their corresponding ATMs. For example, we found
multiple neo-N-termini in collagens alpha-2 (I) and alpha-1(I),
and IGFBPS, as well as at limited sites in 91 other proteins. In a
small subset of proteins we identified neo-N-termini that were
unique to CAMs, and these included six neo-N-termini in the
prodomains of MMP-1 and MMP-3, suggesting that activation
of these MMPs might be functionally important in CAMs.

It is well established that MMP activity is increased in tumors
and promotes cancer cell migration and invasion;" the present
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in vivo imaging data indicate that CAMs contribute to this
increased activity in an animal model. It is likely that MMPs
have multiple roles in different tumor functions accounting for
the fact that MMP inhibitors have not yet led to successful
anticancer therapies."® The present demonstration of increased
expression and activation of MMP-1, MMP-2 and MMP-3 in
CAM secretomes nevertheless suggests a novel dimension to
the role of these enzymes. In vivo there may be activation of
myofibroblast MMPs by epithelial or cancer-derived proteases,
e.g., MMP-7.** Importantly, however, the present data indicate
that increased MMP activity in CAM media occurs
independently of a cancer or epithelial cell stimulus. This is
nevertheless relevant to cancer cell function not least because
MMP-1, MMP-2, and MMP-3 stimulate cancer cell migration
and make a substantial contribution to the chemotactic
properties of CAM conditioned media. The prodomain
cleavages of MMP-1, -2, and -3 identified here are all on the
N-terminal side of the conserved cysteine switch sequence, and
we think it is possible that these facilitate activation by exposing
the site for autolysis much in the same way that trypsin
activates MMPs.*> However, the precise protease(s) respon-
sible for CAM-autonomous prodomain cleavages is presently
unclear and should now be investigated. In this context it is
worth noting that there was decreased abundance of protease
inhibitors, including TIMPs-1, -2, and -3 in one patient
(Supporting Information Table S4), which may contribute to
increased protease activity.

The present study using SILAC—COFRADIC has provided
the most detailed analysis of gastric cancer myofibroblast
secretomes to date. It extends previous studies,'® but in
addition, it defines differences in the extracellular degradomes
of CAMs and ATMs. At least some of the differences between
CAFs or CAMs and their normal tissue counterparts are
thought to reflect interactions that occur in the presence of
cancer cells.® The present data indicate that selective MMP-
activation occurs in the CAM secretome even when these cells
are cultured in the absence of cancer cells. This property
reflects a cell-autonomous mechanism by which CAMs might
contribute to a cancer-promoting microenvironment. The
possibility of targetin§ anticancer therapies to stromal cells
has emerged recently,* and the present data indicate how these
could be refined to include the stromal degradome.
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